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BACKGROUND AND PURPOSE

Endostatin (ES) is a c-terminal proteolytic fragment of collagen XVIII with promising antitumour properties in several tumour
models, including human glioblastoma. We hypothesized that this peptide could interact with plasma membrane ion channels
and modulate their functions.

EXPERIMENTAL APPROACH
Using cell proliferation and migration assays, patch clamp and Western blot analysis, we studied the effects of ES on the
proliferation and migration of human glioblastoma U87 cells, mediated by T-type Ca?*" channels.

KEY RESULTS

Extracellular application of ES reversibly inhibited T-type Ca?" channel currents (T-currents) in U87 cells, whereas L-type Ca®*
currents were not affected. This inhibitory effect was associated with a hyperpolarizing shift in the voltage-dependence of
inactivation but was independent of G-protein and protein tyrosine kinase-mediated pathways. All three o, subunits of
T-type Ca?* channels (Cay3), oug (Cav3.1), oun (Cav3.2) and o (Cayv3.3), were endogenously expressed in U87 cells. Using
transfected HEK293 or CHO cells, we showed that only Cay3.1 and Cay3.2, but not Cay3.3 or Cay1.2 (L-type), channel
currents were significantly inhibited. More interestingly, ES inhibited the proliferation and migration of U87 cells in a
dose-dependent manner. Pretreatment of the cells with the specific T-type Ca?" channel blocker mibefradil occluded these
inhibitory effects of ES.

CONCLUSION AND IMPLICATIONS

This study provides the first evidence that the antitumour effects of ES on glioblastoma cells is through direct inhibition of
T-type Ca?* channels and gives new insights into the future development of a new class of antiglioblastoma agents that target
the proliferation and migration of these cells.

LINKED ARTICLE
This article is commented on by Santoni et al., pp. 1244-1246 of this issue. To view this commentary visit http://dx.doi.org/
10.1111/j.1476-5381.2012.01908.x
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PTK, protein tyrosine kinase; T-currents, T-type Ca?* channel currents; VGCC, voltage-gated Ca?* channels
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Introduction

Glioblastoma is the most common and most aggressive
malignant primary brain tumour in humans. This glia-
derived brain tumour is highly invasive, rapidly proliferates
and neurologically destructive, and responds poorly to che-
motherapy (Walker and Kaye, 2001). The treatment of glio-
blastoma remains palliative and no significant advancements
in the treatment have developed in the past years. Recently,
several tumour-derived, circulating angiogenesis inhibitors
generated in vivo by proteolytic degradation have been iden-
tified (Cao, 2001; Skovseth etfal., 2005). In particular, a
20-kDa C-terminal proteolytic fragment of collagen XVIII,
termed endostatin (ES), inhibits tumour growth in several in
vivo tumour models, including human glioblastoma (Boehm
etal., 1997; Sorensen et al., 2002). For example, the endog-
enous expression of ES by C6 glioma cells results in a reduced
tumour growth rate in vivo (Peroulis et al., 2002). Also, local
intracerebral microinfusion of ES improves treatment effi-
ciency and survival in an orthotopic human glioblastoma
model (Schmidt et al., 2004). The antitumour effect of ES is
probably through the inhibition of angiogenesis (Sorensen
etal.,, 2002; Schmidt etal., 2004). Interestingly, there is
growing evidence that ES can elicit a direct effect in tumour
cells (Yang ef al., 2011). It has been reported recently that
peptide 30 derived from ES suppresses the proliferation and
migration of HepG2 cells in vitro (Li et al., 2011). However,
whether and how ES directly affects tumour cells, especially
glioblastoma cells, is less clear.

T-type Ca* channels are a class of calcium-permeable
low-voltage-activated (LVA) channels that open after small
depolarizations of the membrane. Through conducting Ca**
entry and changing [Ca®'];, T-type Ca** channel is crucial for
the orderly progression of the cell cycle and plays a vital role
in the regulation of cell proliferation, growth and gene
expression (Ciapa et al., 1994). In mammals, three o,-subunit
genes have been described that encode distinct T-type Ca®*
channels with unique biophysical and pharmacological
properties: Cav3.1 (ouc), Cav3.2 (oun) and Cav3.3 (ou;) (Perez-
Reyes, 2003). It has long been hypothesized that there exists
a link between T-type Ca* channels and cancer incidence
and progression (Lory et al., 2006). Recent studies also show
that o, subunits of T-type Ca®** channels are expressed in
cancerous cells and participate in tumour pathophysiology;
however, the investigations of their functions have just
begun (Gray and Macdonald, 2006). For example, aberrant
up-regulation of the gene encoding T-type Ca* channel o¢
subunit was detected in various human primary tumours,
suggesting that T-type Ca® channels may play a role in
cancer development by modulating Ca* signalling (Toyota
et al., 1999). Indeed, the T-type Ca** channel has been impli-
cated in proliferation in several tumours (Panner and
Waurster, 2006). There is a growing body of evidence suggest-
ing that tumour cell proliferation could be halted by the use
of T-type Ca®* channel blockers. Furthermore, knocking
down the expression of T-type Ca* channels with siRNA
targeting both o, and o,y resulted in growth inhibition in
MCEF-7 cells, a human breast cancer cell line (Taylor et al.,
2008). Since T-type Ca* channels regulate cell proliferation,
which is a key feature of tumour cells, we hypothesize that
the manipulation of T-type Ca* channels could have prom-
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ising clinical potential for treating highly proliferative
tumours, such as glioblastoma.

In this study, we identified a novel function of ES in
modulating cell proliferation and migration by targeting
T-type Ca** channels in U87 human glioblastoma cells, in
which all three o, subunits of Cay3 were endogenously
expressed. By using heterologously HEK293 or CHO cell
expressing system, we found that only Cay3.1 and Cay3.2, but
not Cay3.3 or Cay1.2, channel currents were inhibited by ES.
Our results highlight the novel mechanism and therapeutic
potential of ES via targeting T-type Ca?* channels for the
treatment of human glioblastoma.

Methods

Cell culture and transfection

All reagents were obtained from Sigma (St. Louis, MO, USA)
unless otherwise stated. The drug/molecular target nomen-
clature (e.g. receptors, ion channels and so on) used in the
present study conforms to BJP’s Guide to Receptors and Chan-
nels (Alexander et al., 2011). The U87 human glioblastoma
cell lines were obtained from American Type Culture Collec-
tion (ATCC, Rockville, MD, USA). U87, HEK-293 and CHO
cells were cultured using standard techniques as described in
our previous reports (Tao et al., 2008; 2009a). To measure the
U87 cell membrane currents, the cells from the stock culture
were plated onto glass coverslips and used for experiments
2-3 days after plating. Transient transfection in HEK293 or
CHO was performed using the standard calcium phosphate
transfection method (Tao et al., 2008) with a DNA mix con-
taining 1:9 ratios (by weight) of GFP plasmid and constructs
encoding for human Cay3.1, Cay3.2 and Cay3.3 isoforms. The
full-length human Cay3.1, Cay3.2 and Cay3.3 o;-subunits
(kindly provided by Dr Terry P Snutch, University of British
Columbia, Canada) were cloned in the pcDNA3 vectors.

Reverse transcription-PCR (RT-PCR)

Total RNA was extracted from US87 cells as described previ-
ously (Tao et al., 2009a; Wang et al., 2011). Reverse transcrip-
tion was carried out with SuperScriptTMII (Invitrogen,
Carlsbad, CA, USA). The sequences of the primers employed
in this study are summarized in Table 1. The PCR protocol
includes a denaturation step at 95°C for 2 min, denaturation,
annealing and elongation were carried out at 94°C for 30 s, at
65°C for 20 s and at 72°C for 1 min. PCR was carried out for
33 cycles. PCR analysis was repeated at least twice with the
same samples to confirm reproducibility of the results.

Western blot analysis

Western blotting was performed by following the procedures
as described in our previous studies (Wang et al., 2011; Zhang
et al., 2011). For antibody detection, after blocking with 5%
non-fat milk in TBST for 1 h at room temperature, mem-
branes were incubated with diluted primary polyclonal goat
antihuman Cay3.1, Cay3.2 or Cay3.3 antibodies (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA) (1:500) and incu-
bated at 4°C for overnight. After five washes with TBST, mem-
branes were incubated for 2 h with 1:5000 diluted donkey
antigoat secondary antibody (Sigma, St. Louis, MO, USA).



Table 1

Endostatin inhibits T-type Ca?* channels

Sequence of primers for three oy subunits (oug, oun, o) of T-type Ca?* channels

Subunit Sequence

oG 5-GCTCTTTGGAGACCTGGAGTGT-3’
5-TAGGCGAGATGACCGTGTTG-3’

OliH 5-TTGGGTTCCGTCGGTTCT-3’
5-ATGCCCGTAGCCATCTTCA-3’

o4 5-ATCGGTTATGCTTGGATTGTCA-3’
5-TGCTCCCGTTGCTTGGTCTC-3"

Accession number Product size (bp)

AF190860 197
AF051946 193
AF393329 203

After five washes, the specific binding of the primary anti-
body was detected with SuperSignal Ultra chemiluminescent
substrate (Pierce, Rockford, IL, USA).

Whole-cell patch clamp recording

Recordings were made using standard whole-cell techniques
at room temperature as previously described (Tao et al., 2008;
2009b; Wang et al., 2011; Zhang et al., 2011). Electrodes were
pulled from borosilicate glass microcapillary tubes (World
Precision Instruments, Sarasota, FL, USA). They had resis-
tances from 2 to 3 MQ when filled with internal solution. We
made recordings using a MultiClamp 700B amplifier (Molecu-
lar Devices, Union City, CA, USA) and controlled voltage
commands and digitization of membrane currents using a
Digidata 1440A interfaced with Clampex 10.2 of the pClamp
software package (Molecular Devices), running on a personal
computer. Currents were low-pass filtered at 2-5 kHz. Series
resistance (Rs) and capacitance (Cm) values were taken
directly from readings of the amplifier after electronic sub-
traction of the capacitive transients. Series resistance was
compensated to the maximum extent possible (at least 80%).
Current traces were corrected for linear capacitive leak with
online P/6 trace subtraction. The external solution was com-
posed of (in mM): 10 BaCl,, 125 tetraethylammonium chlo-
ride (TEA-CI), 10 HEPES and 10 glucose (pH 7.3, adjusted
with TEA-OH). The pipette solution contained (in mM): 120
CsCl, 2 MgCl,, 11 EGTA, 15 HEPES, 4 Mg-ATP and 10 glucose
(pH 7.3, adjusted with CsOH). To isolate T-currents, we
blocked the L-type Ca*" channels with application of 10 uM
nifedipine in the external solution (Zhang et al., 2011). Stock
solutions of ES, NNC 55-0396, mibefradil, GDP-B-S and ATP-
v-S were prepared in distilled deionized water. Stock solutions
of nifedipine, Bay K8644 and lavendustin C were prepared in
dimethyl sulfoxide (DMSO). The concentration of DMSO in
the bath solution is expected to be less than 0.01% and had
no functional effects on T-type Ca* channels (Tao etal.,
2009a). The stock solutions were diluted in the external or
pipette solution just before use. Unless otherwise indicated,
ES was bath applied with an air-pressure injector (PicoPump
PV820, World Precision Instruments). The micropipette was
located at distances ranging from 100 to 150 um from the
recorded cells. In experiments in which ES was intracellularly
applied with the pipette solution, current measurements were
started at least 5 min after breaking the patch.

[?H]-thymidine incorporation assay

Proliferation of U87 cells was determined by quantitating the
incorporation of [*H]-thymidine as an indicator of DNA syn-
thesis. To determine the effects of ES on the proliferation of
U87 cells, 4 x 10° cells per well treated with different concen-
trations of ES were cultured in flat bottom 96-well plates
for 3 days. Cells were pulsed with 1puCi per well of
[*H]-thymidine for the last 18 h of the culture period. Follow-
ing incubation, cells were rinsed three times with ice-cold PBS
and 5% TCA and lysed with 0.5 M NaOH. Subsequently, the
cells were transferred into liquid scintillator in scintillation
vials, and the radioactivity was measured by a liquid scintil-
lation spectrometer. Data on [*H]-thymidine uptake into U87
cells are presented as % of controls.

Small interfering RNA (siRNA) transfection
U87 cells were seeded (4 x 10° cells per well) onto laminin-
polyornithine-coated coverslips. siRNA (chemically synthe-
sized) targeting both o (Cay3.1) and oy (Cay3.2) T-type Ca?
channels (sense, 5-GCCAUCUUCCAGGUCAUCACATT-3,
antisense, S5-UGUGAUGACCUGGAAGAUGGCTT-3") was
purchased from Qiagen (Valencia, CA, USA). The negative
control siRNA (5-UAGUGAAGGGAGUCGGAUCUC-3") was
used as control. Cells were transfected with 0.6 ug of augm
siRNAs or control siRNA at a final concentration of 100 nM
by using Oligofectamine (Invitrogen, Karlsruhe, Germany).
Then 48 h post transfection, U87 cells were subjected to the
[*H]-thymidine incorporation assay.

Cell migration

In vitro tumour cell migration was assessed using a Biocoat™
Matrigel chamber (BD Biosciences, Bedford, MA, USA) with
cell culture inserts containing an 8-um pore size membrane
with a thin Matrigel (40 uL of 1 mg-mL™") basement mem-
brane matrix. Half a millilitre of cells (5 x 10* cells ml") in
serum-free DMEM was added to the cell culture insert of a
Biocoat™ Matrigel-coated chamber. To avoid gradients (Kim
etal.,, 2001), ES was added to both the upper and lower
compartments before the measurement of migration/
invasion. Fibronectin plays an important role both as a sub-
strate adhesion molecule as well as a chemokinetic agent
(Ohnishi et al., 1997) and was added in the bottom chamber
as a chemoattractant (25 pg-mL™) (Huang et al., 2004a; Li
et al., 2007). The cells were then incubated at 37°C in humidi-
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Characterization of voltage-gated Ca*" channel currents in U87 human glioblastoma cells. Examples of traces and pooled data showing the effects
of nifedipine (10 uM, A) or Bay K8644 (1 uM, B) on barium currents elicited by a 150-ms long depolarizing step pulse from the holding potential
of —60 to 0 mV. (C) Examples of traces and pooled data showing the effects of NiCl, (100 uM) on T-currents. Currents with 10 mM barium as
a charge carrier were elicited by a 80-ms-long depolarization step pulse from the holding potential of -90 to —30 mV. **P < 0.01 versus control,

***P < 0.001 versus control.

fied 5% CO, conditions for 10 h. To quantify tumour cell
migration, non-invading cells were removed from the top
surface of the membrane by scrubbing gently with a cotton-
tipped swab. The cells on the bottom surface of the mem-
brane were fixed with Diff-Quik stain set (Dade Behring,
Deerfield, IL) and counted to determine the number of cells
that passed through the Matrigel and membrane layers.

Data analysis

All data are expressed as mean = SEM, and Prism 5.0 (Graph-
Pad Software Inc., La Jolla, CA, USA) was used for data plot-
ting. Student’s f-tests or one-way ANOVA with post hoc
Bonferroni were used to compare the different values and
were considered significant at P < 0.05. Dose-response curves
were fitted by non-linear regression Y = 1/(1 + 1008130 -3,y
where X is the decadic logarithm of the concentration used,
ICsp is the concentration at which the half-maximum effect
occurs and ny is the Hill coefficient. I-V curves were fitted by
Ina = Gmax(V — Ewv) [ {1 + exp[(V — Vip)/k]}, where Gpax is
maximum conductance, E.., is reversal potential, V;, is half
voltage activation and k is slope factor. The activation data
were fitted with a Boltzmann equation: G/Gm.x = 1/{1 +
exp[(Viz — V)/k]}, where G/Gnmax is the relative conductance
normalized by the maximal conductance, V;; is the potential
required for half-activation of the current and k is the Boltz-
mann coefficient. Steady-state inactivation data were fitted
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with the Boltzmann equation: I/I. = 1/{1 + exp[(Vi. — V)/K]},
where V;,; and k are the half-maximum inactivation potential
and the slope factor, respectively.

Results

Characterization of voltage-gated Ca**
channels in human glioblastoma U87 cells
Voltage-gated Ca?* channels (VGCC) fall into two categories:
high-voltage activated (HVA), including L-, N-, P/Q- and
R-type, and low-voltage activated (LVA) T-type. To test
whether ES regulates VGCC, we first determined the subtypes
of VGCC in U87 human glioblastoma cells. Whole-cell cur-
rents were recorded using 10 mM Ba?* as charge carrier. The
HVA channel currents were elicited by a depolarization step
from -60 to O mV (Figure 1A). Application of nifedipine
(10 uM), a specific L-type Ca* channel blocker, completely
abolished the HVA channel currents (n = 7, P < 0.001,
Figure 1A), indicating that only L-type HVA channels are
functional in U87 cells. To further confirm our hypothesis,
Bay K8644, a specific L-type Ca* channel activator, signifi-
cantly increased the current density from 12.8 + 3.9 pA-pF!
to 24.7 = 4.2 pA-pF! (n=S5, P<0.001, Figure 1B). In addition,
LVA T-type Ca* channel currents (T-currents) in U87 cells
were further characterized. As shown in Figure 1C, a current



trace was recorded when a U87 cell was given the designated
depolarizing test pulse from —90 to —30 mV with application
of 10 uM nifedipine in the external solution. There were few
steady-state components in the current (Figure 1C). Addition
of NiCl, (100 uM), a specific T-type Ca** channel blocker
(Todorovic and Lingle, 1998; Lee et al., 1999), inhibited the
inward currents by ~83.5% (n = 6, P < 0.01, Figure 1C). The
remaining ~16.5% T-current could be attributed to the differ-
ent sensitivity of three subtypes of T-type Ca®" channels
(Cay3.1, Cay3.2 and Cay3.3) to Ni** (Perez-Reyes, 2003). Fur-
thermore, application of mibefradil (100 uM), another T-type
Ca* channel blocker, almost completely blocked the inward
currents (inhibition = 93.6 = 6.9%, n = 5). The low voltage-
activated, fast inactivating, steady-state component-free and
Ni*-sensitive current showed typical properties of the
T-currents.

ES selectively inhibited T-currents

After having identified that U87 cells express both L- and
T-type Ca* channels, we further investigated which type of
Ca?* channel was affected by ES. We first determined the
effects of ES on L-type Ca* channels and found that bath
application of ES at 0.1 uM did not significantly affect the
L-type Ca?* channel currents (n = 7, Figure 2A). However, bath
application of 0.1 uM ES significantly inhibited the ampli-
tude of the basal T-type Ca*" channel currents (T-currents) by
23.7 = 29% (n =9, P < 0.01, Figure 2B,C) in U87 human
glioblastoma cells, whereas intracellular application of ES
elicited no such effects (n = 8, Figure 2D). Upon washout of
ES, the amplitude of T-currents partially returned within
3 min (Figure 2C), which indicated that the effect of ES on
T-currents in U87 cells was not due to rundown. A current—
voltage (I-V) curve was evoked by a series of depolarizing
pulses from a holding potential of -90 mV to test potentials
between —-80 and O mV. Population data showed that at a
higher depolarizing voltage, above —-60 mV, 0.1 uM ES signifi-
cantly up-shifted the I-V curve, and at —30 mV the current
density declined from 16.4 *= 0.9 pApF' to 12.8 =*
1.5 pA-pF? (n = 8, P < 0.01, Figure 2E). From the size of the
effect of ES on currents elicited by depolarization to -30 mV,
it is clear that ES inhibited T-currents in a dose-dependent
manner (Figure 2F). The relationship between the concentra-
tion of ES used and the degree of T-current inhibition
observed is described by a logistic equation where the con-
centration of ES producing half-maximal inhibition (ICso) is
0.32 uM, the apparent Hill coefficient is 0.92 and the
maximal inhibitory effect is 46.6 + 2.7% (n = 8, P < 0.01;
Figure 2F). To further confirm the selectivity of ES on
T-currents, we pretreated U87 cells with NNC 55-0396, a
mibefradil nonhydrolysable analogue without L-type
channel efficacy (Huang et al., 2004b) and found that in the
cells pretreated with NNC 55-0396 (8 uM) the ES-induced
T-current inhibition was completely abolished (inhibition =
2.3 = 0.3%, n = 7; Figure 2G,H).

ES leftward shifted steady-state

inactivation curve

Next, we further investigated whether the electrophysiologi-
cal properties of T-type Ca®*" channels were affected by ES;
steady-state activation and inactivation potentials of T-type

Endostatin inhibits T-type Ca?* channels

Ca* channels were studied (Figure 3A,B). ES did not signifi-
cantly shift, in the hyperpolarized direction, the activation
potential (Vy, from —34.9 = 1.7 mV to -36.1 = 1.3 mV, and
k-value from 6.8 = 0.6 to 6.9 = 0.9, n = 9) (Figure 3C,D).
However, ES 0.1 uM leftward shifted the steady-state inacti-
vation potentials of T-type Ca?" channels by -15 mV (V.
from -47.9 = 1.6 mV to -63.5 = 2.7 mV, P < 0.01, and k-value
from -6.5 + 0.5 to -8.7 = 0.3, n =8, P < 0.01) (Figure 3C,D).
These results suggest that the reduced T-currents observed
upon application of ES could be due to more channels
remaining in the inactivated state after activation.

G-protein and tyrosine kKinases were not
involved in ES induced T-current inhibition
Next we tried to find out the mechanisms underlying
ES-induced T-current inhibition. To determine whether
G-proteins are involved in ES-mediated inhibition of T-type
Ca* channels, we dialysed cells with guanosine-5-O-(2-
thiodiphosphate) (GDP-B-S, 1 mM), a non-hydrolysable GDP
analogue. Our results showed that ES (0.1 uM) still dramati-
cally inhibited the T-currents in the presence of GDP-B-S
(inhibition% = 23.7 = 4.3, n =7, Figure 4A,D), indicating that
ES-induced T-current inhibition was not via GPCRs. ES was
reported to interact with VEGFR-1 that coupled to a family of
receptor protein tyrosine kinase (PTK) (Kim et al., 2002). To
determine whether inhibition of T-currents by ES is
TK-dependent, we pretreated the cells with lavendustin C, a
potent PTK inhibitor, and found that ES still robustly inhib-
ited the T-currents in these pretreated cells (Figure 4B); in the
presence of 5 uM lavendustin C, 0.1 pM ES reduced the peak
T-currents by 24.2 = 1.6% (n =9, P < 0.05, Figure 4D), which
was not significantly different from ~23.7% inhibition
observed under control conditions (Figure 4B,D). Lavendus-
tin C alone had no effect on the basal T-currents (data not
shown). Evidence supporting the finding that the inhibition
of T-currents by ES in U87 cells is not dependent on PTK was
obtained by dialysing the cells with 5 mM ATP-y-S, a non-
hydrolysable analogue of ATP. If basal TK activity was respon-
sible for the inhibitory effect of ES, then the dialysis of cells
with a pipette solution containing ATP-y-S (5 mM) would be
expected to produce irreversible, tyrosine thiophosphoryla-
tion of the Ca* channel protein (or other auxiliary proteins)
and attenuated the ES-induced inhibition. However, in the
presence of ATP-y-S, 0.1 uM ES inhibited the amplitude of the
T-currents by 27.2 + 3.5% (n = 8; Figure 4C,D), which is not
significantly different from the level of inhibition exhibited
by cells dialysed with the control pipette solution (P > 0.05).
It should be noted that ATP-y-S alone produced a stimulant
effect on the basal T-currents (~46%) (n = 7). Taken together,
these results strongly suggest that other mechanisms such as
direct inhibition, rather than G-protein or PTK-mediated
pathway, are involved in ES-induced T-current inhibition.

Expression of oy subunits of Cav3 in U87
human glioblastoma cells

It has been reported that Cay3.1, Cay3.2, and Cay3.3 are
differentially expressed in the brain and various peripheral
tissues (Perez-Reyes, 2003). To determine which subtypes of
Cay3 are endogenously expressed in U87 human glioblas-
toma cells, we first examined the expression of the three
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ES selectively inhibited T-currents. Examples of traces and pooled data of HVA L-type Ca?* currents (A) or LVA T-currents (B) recorded under the
control conditions and during exposure to 0.1 uM ES. (C) Time course of changes in amplitude of T-currents in control conditions, during
exposure to 0.1 uM ES and washout. (D) Examples of traces and pooled data showing no inhibition of T-currents by intracellular application of
ES. (E) Current-voltage (/I-V) curve (evoked by a series of depolarizing pulses from a holding potential of -90 mV to test potentials between —80
and 0 mV, in 10-mV increments) for the inhibitory effects of 0.1 uM ES on T-currents. (F) Dose-response curve for the inhibitory effects of ES on
T-currents. The line represents the best fit of the data points to the sigmoidal Hill equation (see Methods). Number of cells tested at each
concentration of ES is indicated in parentheses. Time course (G) and pooled data (H) showing that pretreatment of cells with NNC 55-0396 (8 uM)
completely abolished the inhibitory effect of ES on the T current; **P < 0.01 versus control.
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ES shifted the steady-state inactivation curve in a hyperpolarizing
direction. (A) The steady-state activation of T-type calcium channels
was not altered by 0.1 ES. Tail currents were elicited by repolarization
to =110 mV after 40 ms test pulses from —80 to 0 mV in increments
of 10 mV. (B) ES shifted steady-state inactivation curve of T-type
calcium channels to the hyperpolarizing direction. Steady-state inac-
tivation curves were obtained by 40 ms test pulse to —30 mV after
the 3 s conditioning pulses ranging from -110 to +10 mV with
10 mV increments. (C,D) Pooled data showing the changes in Viar
and k (slope factor) indicated in (A) and (B), respectively.

T-type Ca* channel o, subunits at transcription level by
RT-PCR. For each o, subunit, the corresponding cDNA clone
was used as a positive control in amplification. Our results
showed that the transcripts for the o, (Cav3.1, predicted size
of amplicon is 197 bp), oun (Cay3.2, predicted size of ampli-
con is 193 bp) and oy (Cav3.3, predicted size of amplicon is
203 bp) subunits were present in cultured U87 cells. Negative
control reactions, in which reverse transcriptase was not
added during the reverse transcription step, showed no PCR
products (Figure SA). We further determined the expression
of the three o, subunits at the protein level by immunoblot-
ting with subunit-specific antibodies. HEK293 cells trans-
fected with o6, ou;, or ouy cDNA served as corresponding
positive controls. Western blotting results showed that U87
cells express all of three o, subunits (o6, o and o) of Cay3
(Figure 5B). Each band had a molecular weight above
200 kDa, consistent with the predicted sizes of the o, sub-
units obtained from human sequences.

ES selectively inhibits Cav3.1 and Cav3.2,
but not Cayv3.3, T-type Ca’** channels

To further determine which subtype of Cay3 is inhibited by
ES, we examined the inhibitory effects of ES on the three
clones of HEK293 cells that had been transfected with corre-
sponding Cay3 subunits. HEK293 is a human embryonic
kidney cell line, and does not express Cay3 subunits endog-
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G-protein and PTK are not involved in ES-induced T-current inhibi-
tion. Time course showing the effects ES (0.1 uM) on T-currents in
the presence of GDP-B-S (1 mM, A) or lavendustin C (5 uM, B). Inset:
an example of the current traces indicated, respectively, in (A) and
(B). Numbers on plot indicate which points were used for sample
traces. (C) Intracellular ATP-y-S has no effect on ES-induced T-current
inhibition. Time course of changes in amplitude of T-currents in U87
cells dialysed with a pipette solution containing 5 mM ATP-y-S in the
absence (a) or presence of 0.1 uM ES (b). (D) Pooled data showing
the effects of ES (0.1 uM) on T-currents in the presence of GDP-B-S
(1 mM), lavendustin C (5 uM) or ATP-y-S (5 mM), respectively.

enously. Our results show that application of 0.1 uM ES
robustly inhibited both Cay3.1 and Cay3.2 channel currents
by 24.1% (I/Iconrer = 0.76 = 0.05, n=9, P <0.01; Figure 6A) and
28.4% (I/Iconvor = 0.72 = 0.07, n = 11, P < 0.01; Figure 6B),
respectively, while the Cay3.3 channel currents were not
affected (I/Iconvor = 0.98 * 0.05, n =9, P > 0.05; Figure 6C).
Similar inhibitions of Cay3.1 and Cay3.2 channel currents
were observed at all test potentials examined (Figure 6A-C).
Consistent with the inhibition in U87 cells, this current inhi-
bition in transfected HEK293 cells was selective to T-channels
since no effect was observed on Cayl.2 L-type currents
(Figure 6D), even when the ES concentration was increased to
10 uM (n = 6; data not shown). A similar inhibitory effect was
observed in CHO cells (Figure 6E), indicating that the effect
was not restricted to cell type. Overall, the direct inhibition of
T-type Ca?* channels in U87 human glioblastoma cells was
mediated through only Cay3.1 and Cay3.2, but not Cay3.3.

ES attenuated U87 cell proliferation via
T-type Ca®* channels

Previous studies have indicated that functional T-type Ca*
channels endogenously expressed in many tumour cells play
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important roles in cell proliferation (Panner etal., 2005;
Panner and Wurster, 2006). As we showed that ES robustly
inhibits the Cay3.1 and Cay3.2 channel currents, we deter-
mined whether ES also attenuates the proliferation of U87
human glioblastoma cells. In six experiments, it was shown
that serum-induced proliferation of U87 cells was inhibited
by ES (0.01-10 uM) in a dose-dependent manner (Figure 7A).
Mibefradil (100 uM), an antagonist of T-type Ca®" channels,
inhibits T-type Ca*" channel currents in U87 cells by 93.6%.
In this study, the effect of mibefradil on the cell proliferation
was also examined. Mibefradil (100 uM) significantly inhib-
ited the cell proliferation by 38.7 = 3.5% (n = 6, P < 0.01,
Figure 7B), implying the involvement of T-type Ca?** channels
in U87 cell proliferation. In contrast, the L-type Ca?*" channel
blocker nifedipine had no such effects on cell proliferation at
pharmacologically appropriate doses (10 uM) (Figure 7B).
Similar results were observed with another L-type Ca*
channel blocker nimodipine (10 uM) (Figure 7B). Application
of ES (0.1 uM) in U87 cells pretreated with mibefradil
(100 uM) failed to produce any further inhibition (Figure 7B),
which indicates that T-type Ca®" channels are involved in
ES-induced inhibition of U87 cell proliferation. To further
determine the role of Cay3.1 and Cay3.2 T-type Ca® channels
in ES-induced cell proliferation, we transfected U87 cells with
siRNA targeting both o and oyy (046/m). Western blot analysis
showed that the expression of either oug or ouy was signifi-
cantly reduced in U87 cells transfected with o6 SiIRNA com-
pared with the counterparts transfected with control siRNA
(Figure 7C). As shown in Figure 7D, knockdown of oygmu in
U87 cells resulted in near complete abolishment of the
inhibitory effect of ES on cell proliferation (n = 6, Figure 7D),
whereas ES still significantly inhibited the cell proliferation in
the control siRNA-transfected cells (n = 6, Figure 7D)(94.5 =
5.7%, n = 6). These results strongly indicate that T-type Ca*
channels play a critical role in the proliferation of U87 cells,
and the effect of ES on cell proliferation is due to the blockade
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of Cay3.1/Cay3.2 T-type Ca* channels in U87 human glio-
blastoma cells.

ES inhibits U87 cell migration via T-type
Ca?* channels

Because T-type Ca* channels also play important roles in cell
migration, we tested the ability of ES to inhibit U87 cell
migration in vitro. Cell suspensions were loaded to the top
chamber with or without the addition of ES. After 10 h incu-
bation, transmigrated cells on the underside of the inserts
were fixed, stained and counted. ES significantly inhibited
U87 «cell transmigration in a dose-dependent fashion
(Figure 8A). However, the L-type Ca® channel blocker nife-
dipine (10 uM) had no such effects on cell migration at phar-
macologically appropriate doses (10 uM) (Figure 8B). In
contrast, the T-type Ca*" channel blocker mibefradil signifi-
cantly inhibited the cell transmigration by 29.2 = 5.1% (P <
0.01; Figure 8B) at the concentration of 100 uM. To further
test whether ES inhibits cell migration via T-type Ca*" chan-
nels, we investigated whether mibefradil would occlude
ES-mediated effects. Indeed, similat to ES, application of
100 uM  mibefradil inhibited U87 cell transmigration
(Figure 8B). Notably, application of ES during the maximum
mibefradil-induced response failed to produce any further
inhibition (Figure 8B). Therefore, these results suggest that
inhibition of T-type Ca* channels by ES attenuates cell migra-
tion in U87 human glioblastoma cells.

Discussion and conclusions

Previous in vitro and in vivo studies have suggested that T-type
Ca* channels are important in tumour cell proliferation and
migration (Huang et al., 2004a; Panner and Wurster, 2006;
Li and Xiong, 2011). The current study revealed that ES
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directly inhibits U87 human glioblastoma cell proliferation
and migration by targeting T-type Ca** channels. Several lines
of evidence support this conclusion. Firstly, ES selectively
inhibited T-type Ca?*" channels in U87 cells, whereas L-type
Ca* channels were not affected. Secondly, this inhibition was
shown to be independent of either G-protein or protein
tyrosine kinases. Using heterologously expressing Cay3 in
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HEK293 or CHO cells, we found that only Cay3.1 and Cay3.2,
but not Cay3.3 or Cayl.2, were significantly inhibited.
Thirdly, ES suppressed cell proliferation and migration in a
dose-dependent manner. These ES induced inhibitory effects
were occluded by the T-type Ca?** channel blocker, mibefradil,
which itself also inhibited U87 cell proliferation and migra-
tion. Our results thus suggest a novel mechanism for the
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antiproliferation effects of ES via T-type Ca*" channels that
might be a potential target for human glioblastoma therapy.

Although the mechanisms of in vivo antitumour action
are less understood and remain controversial, ES was previ-
ously considered to interact with several endothelial cell-
surface receptors including tropomyosin, caveolin-1 and
VEGFR-1 that are involved in angiogenesis (Kim et al., 2002;
Wickstrom et al., 2002; Skovseth et al., 2005). For example,
Peroulis efal. (2002) has reported that the endogenous
expression of ES by C6 glioma cells results in a reduced
tumour growth rate in vivo. Furthermore, Schmidt et al.
(2004) showed that local intracerebral microinfusion of ES
improved treatment efficiency and survival in an orthotopic
human glioblastoma model. These results suggested that anti-
angiogenesis effect was critically required for ES in vivo in the
growth and expansion of tumours including glioblastoma.
However, several studies later failed to observe an antitumour
effect of ES (Marshall, 2002). In contrast, growing evidences
have recently shown that ES could play a direct role in inhib-
iting tumour cells (Yang etal.,, 2011). Also, it has been
reported recently that peptide 30 derived from ES suppresses
the proliferation and migration of HepG2 cells in vitro (Li
et al., 2011). In the present study, we revealed that, besides its
antiangiogenesis effects, ES played a direct role in inhibition
of U87 human glioblastoma cell proliferation and migration
in vitro by targeting T-type Ca** channels.

T-channels are present in several cancerous cell lines, such
as neuroblastoma, retinoblastoma and glioma cells (Chemin
et al., 2002; Latour et al., 2004). Recent studies have shown
that o4 (Cav3.1), one of the T-channel subunits, has been
shown in various human tumours, including colon cancer,
pancreatic tumour and glioblastoma, as well as in acute myel-
ogenous leukaemia (Toyota et al., 1999; Lory et al., 2006).
Abnormal up-regulation of the gene encoding T-type Ca®
channel o, (Cav3.1) subunit was detected in various human

primary tumours (Toyota et al., 1999), suggesting that T-type
Ca** channels play a role in cancer development. In the
present study, we reported that all three subtypes of Cav3.1,
Cav3.2, and Cav3.3 were shown to be endogenously
expressed in U87 human glioblastoma cells. There has long
been hypothesized that a link exists between regulation of
these channels and cancer progression (Lory et al., 2006). For
example, silencing of Cav3.1 (ous) channels by methylation
of CpG islands (GC-rich regions of DNA, mainly in promoter
regions) was found in number of primary tumours (Lory
et al., 2006), which indicated that Cav3.1 may be a putative
tumour suppressor gene (Toyota et al., 1999). In addition,
Cav3.2 T-channel (o4n) may also be involved in cancer growth
since neuroendocrine differentiation of cancer epithelial
cancer cells was associated with an increase in their func-
tional expression (Mariot etal.,, 2002). Furthermore, the
impairment of T-channels showed an inhibitory role in
cancer development and progression (Lory et al., 2006). Con-
sistent with these results, we found in the present study that
blockade of T-channels inhibited U87 cell proliferation and
migration, whereas inhibition of L-channels elicited no such
effects. Recent studies have shown that T-type Ca* channels
are expressed in several cancerous cells (Gray and Macdonald,
2006), although their functional role has only begun to be
investigated. At low voltages, T-type Ca*" channels are known
to mediate a phenomenon known as ‘window current’
(Panner and Wurster, 2006; Vassort et al., 2006). The term
‘window’ refers to the voltage overlap between the activation
and steady-state inactivation at low or resting membrane
potentials. As a result, there is a sustained inward current
carried by a small portion of channels that are not completely
inactivated. Window current allows T-type Ca*" channels to
regulate Ca* homeostasis under nonstimulated or resting
membrane conditions (Perez-Reyes, 2003). In the present
study, we observed that inhibition of T-currents by ES is
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highly dependent on the inactivation state of the channels.
ES hyperpolarized induced an approximately —15 mV shift of
the steady-state inactivation curve in U87 cells, whereas acti-
vation of curve was not affected. Although it is unclear
whether the hyperpolarizing shift of the steady-state inacti-
vation curve would produce a significantly modification in
the T-type ‘window current’, our results suggested that the
reduced T-currents observed upon application of ES could be
due to more channels remaining in the inactivated state after
activation. Further studies will be needed to address how
making less T-type Ca®** channels available for opening
mechanistically contributes to the inhibitory effect of ES in
U87 human glioblastoma cells.

It is well established that the pathology of tumour mainly
consists of proliferation and migration (Kunzelmann, 2005).
Particularly, proliferation was thought to be a key factor in
the development of tumour (Kunzelmann, 2005; Lory et al.,
2006). A number of prior studies suggested a potential role of
T-type Ca* channels in controlling cell proliferation and
migration. T-type Ca®" channels played the key role in the
regulation of intracellular Ca* during the tumour develop-
ment (Kunzelmann, 2005; Panner and Wurster, 2006; Gray
and Macdonald, 2006), which was further confirmed by the
fact that T-type Ca* channel blockers inhibited the tumour
growth (Wang et al., 2004). The pharmacological inhibitors of
T-type Ca®* channels, such as mibefradil and pimozide, have
been demonstrated to be effective in decreasing cell prolifera-
tion in glioma cells (Panner et al., 2005) and breast cancer
cells (Strobl et al., 1998). Previous studies have revealed the
antiproliferative effect of mibefradil in various cell types
(Lory et al., 2006). Among them a few have succeed in dem-
onstrating that the effect was in fact due to the T-type Ca®
channel blockade in rat neonatal cardiomyocytes (Li et al.,
2005). Furthermore, inhibition of T-type Ca?" channels
reduces cell proliferation in human esophageal carcinomas
via a p53-denendent pathway (Lu et al., 2008). In contrast,
nonspecific antiproliferative effects of mibefradil in pancre-
atic beta-cells may be due to accumulation inside cells and
hydrolysis to metabolites which exert L-type Ca?" channel
inhibition other than blocking T-type Ca* channels (Wu
et al., 2000). However, in our present study, L-type Ca** chan-
nels were not involved in U87 cell proliferation because
blockade of L-type Ca** channels by nifedipine or nimodipine
did not affect the U87 cell proliferation and migration. In
addition, pretreatment of cells with NNC 55-0396, a mibe-
fradil nonhydrolysable analogue without L-type Ca®" channel
efficacy, completely abolished the ES-induced T-current inhi-
bition (Figure 2G,H), which further confirm with the absence
of any effects of ES on L-type currents. In addition, T-type
Ca* channel could also inhibit the new vascularization in the
tumour (Lory et al., 2006). Our results showed that ES could
directly inhibit T-currents in U87 cells independent of GPCRs
and PKs. Instead, this inhibitory effect of ES on inward cur-
rents occurred via a direct inhibition of T-type Ca** channels.
In addition, our results showed that ES dose-dependently
inhibited the proliferation of U87 cells. Therefore, it is rea-
sonable to infer that in addition to its anti-angiogenesis
effects ES could play a direct antitumour role via the inhibi-
tion of the cell proliferation via T-type VGCC. To clarify the
effects of ES on Ca* channels, we used the whole-cell patch
clamp technique to detect Ca** channel currents in U87 cells,
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which express both L- and T-type calcium channels. Ba** was
used as the charge carrier in the present study. Typically,
T-type Ca®* channels have been characterized by their distinct
permeability to divalent ions. Cay3.1 had significantly larger
currents in calcium than in barium (Serrano et al., 2000;
McRory etal., 2001; Adams and Snutch, 2007), whereas
Cay3.2 had significantly larger currents in barium than in
calcium (McRory et al., 2001). Interestingly, there were no
major changes in the kinetics of Cay3.1 and Cay3.2 channel
currents using the different charge carriers. Rundown of ionic
currents is always a concern in whole-cell voltage clamp
recording. We minimized time-dependent changes in barium
currents by using high-resistance pipettes filled with Mg-ATP
4uM (Wang etal.,, 2011) and beginning the experiments
within 10 min after membrane rupture. In addition, we
examined the inhibitory effects of ES on the three human
Cay3 channel clones by heterologously expressing them in
the HEK293 or CHO cells and found that ES selectively inhib-
ited both Cay3.1 and Cay3.2 channel currents, whereas
Cayl.2 or Cay3.3 was not affected. Together, these findings
show that direct blockade of T-currents via Cay3.1 and Cay3.2
channels contributes to the ES-induced antiglioblastoma
effects. However, our results are inconsistent with some pre-
vious reports. Overexpression of T-channels (Cay3.1 and
Cay3.2 subunits) in HEK-293 cells did not affect the prolifera-
tion rate of these cells (Chemin et al., 2000). In NIE-115 cells,
there is a decrease in T-currents that correlates with an
increase in proliferation (Panner efal.,, 2005), leading the
authors to conclude that proliferation of these cell lines is
regulated by the expression of T-channels. The reasons for
these differences remain to be explored, but they could be
attributed to differences in T-channels expressed and/or the
different cell types/passages used.

In conclusion, our present studies characterized a novel
functional role of ES in modulating cell proliferation and
migration by targeting T-type Ca® channels in U87 human
glioblastoma cells, in which all three subunits of Cay3 were
endogenously expressed. Using a heterologously expressing
system, we demonstrated that only Cay3.1 and Cay3.2, but
not Cay3.3 or Cayl.2 channel currents, were directly inhib-
ited. Our results highlight the novel mechanism and thera-
peutic potential of ES via targeting T-type calcium channels
for the treatment of human glioblastoma.
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